Gateway School District Curriculum Map

High School (9-12)

Gatoway High Scriool
3000 Gateway Campus Eved.
Monroevile, PA 15145
412-373-5744

Curriculum Map: Mathematics

Course: Honors Advanced Precalculus and Trigonometry Grade(s): 11-12

Unit 1: Functions and Their Graphs

Brief Summary of Unit

This chapter will develop a more complete, thorough understanding of functions. First, an understanding of what a relation is, and then a determination of whether a relation is a function. Common functions, domain and range of functions, and graphs of functions are discussed. Determining whether a function is increasing or decreasing on an interval and operations on functions and composition of functions are key concepts of this chapter. One-to-one functions and inverse functions as well as model applications with functions using variation are explored in the chapter.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Find and use the slopes of lines to write and graph linear equations in two variables
2. Solve quadratic equations
3. Evaluate functions and find their domains
4. Calculate and interpret the average rate of change of a function over a specified interval
5. Analyze graphs of functions and as well as identify and graph transformations of functions
6. Build new functions from existing functions
7. Find arithmetic combinations and compositions of functions
8. Find inverse functions graphically and algebraically
9. Write algebraic models for direct, inverse and joint variation
10. Fit a linear function for a scatterplot that suggests a linear association

Understandings:

1. Equations can be used to model and solve real-life examples.
2. Functions can be used as models to represent a wide variety of real-life data sets.

Essential Questions:

1. How to sketch the graphs of equations?
2. How to find and the slopes of lines to write and graph linear equations in two variables?
3. How to evaluate functions and find their domains?
4. How to analyze graphs of functions?
5. How to identify and graph transformations of functions?
\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 6. How to find arithmetic combinations and } \\
\text { compositions functions? }\end{array}
$$

7. How to find inverse functions graphically and

algebraically?\end{array}\right]\)| 8.How to write algebraic models for direct,
 inverse, and joint variation? |
| :--- |
| Performance Tasks: |
| Stage Two-Assessment Evidence |
| Sther Evidence: :(quizzes, tests and so on) |

Unit 2: Polynomials and Rational Functions

Brief Summary of Unit

The basis of this unit is to show students how to graph more complex functions by using the prior tools of intercepts but also using end behavior and the ability to find multiple zeros of a function through the Rational Root Theorem and synthetic division.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Sketch and analyze graphs of polynomial functions key features include: intercepts, intervals of increasing and decreasing, relative maxs and mins, end behavior
2. Use long division and synthetic division to divide polynomials
3. Perform operations with complex numbers
4. Determine the number of rational and real zeros of a polynomial
5. Apply the Remainder Theorem
6. Determine domain and find asymptotes of rational functions then sketch
7. Find partial fraction decomposition of rational expressions

Understandings:

1. Equations can be used to model and solve real-life examples.
2. Functions can be used as models to represent a wide variety of real-life data sets.
3. Complex numbers can be used to model and solve real-life problems in electronics.

Essential Questions:

1. How to sketch and analyze graphs of polynomial functions?
2. How to use long division and synthetic division?
3. How to perform operations with complex numbers?
4. How to determine and find the number of rational and real zeros of a polynomial?
5. How to determine the domain of rational functions?

	6. How to find asymptotes of rational functions? 7. How to sketch graphs of rational functions?
Performance Tasks:	
Otage Two-Assessment Evidence	
Stage Three-Learning Plan	

Unit 3: Exponential and Logarithmic Function.

Brief Summary of Unit

Students will explore how to manipulate and solve logarithmic and exponential expressions and equations as well as how to graph them. They will also model real world problem situations with these transcendental functions.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Use the properties of exponents to interpret expressions for exponential functions
2. Evaluate exponential functions with base a and base e
3. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
4. Graph exponential and log functions showing intercepts and end behaviors
5. Evaluate logarithmic functions with base a and natural logarithmic functions
6. Graph logarithmic functions
7. Use exponential and logarithmic functions to model and solve real-life applications.

Understandings:

1. Exponential Functions can be used to model and solve real-life applications.
2. Logarithmic Functions can be used to model and solve real-life applications.

Essential Questions:

1. How to recognize and evaluate exponential and logarithmic functions?
2. How to graph exponential and logarithmic functions?
3. How to use change of base formula to rewrite and evaluate logarithmic functions?
4. How to use properties of logarithms to evaluate, rewrite, expand, or condense?
5. How to solve exponential and logarithmic equations?
6. How to use exponential, growth/decay models, logistic growth models to solve real-life problems?

Performance Tasks:

Other Evidence: :(quizzes, tests and so on)

Stage Three-Learning Plan

Unit 4: Trigonometry

Brief Summary of Unit	
Students will discover basic trigonometric principl trigonometry to solve for sides and angles in triang trigonometric functions as well as their transforma trigonometric functions to solve trigonometric equ	with the Unit Circle followed with right triangle s. Students will learn how to graph the basic ons. Students will also learn how to apply inverse tions.
Stage One-Desired Results	
Established Goals: (Standards of Learning, Conten 1. Describe an angle and convert between rad 2. Identify a Unit Circle and its relationship to 3. Evaluate trigonometric functions of any ang 4. Use fundamental trigonometric identities 5. Sketch the graph of trig functions and trans	Standards) n and degree measure eal numbers tions of sine and cosine functions
Understandings: 1. You can use angles to model and solve real-life applications. 2. Trig and inverse trig functions are used to analyze real life situations. 3. Sine and cosine functions are used for scientific calculations.	Essential Questions: 1. How to describe an angle and convert between radian and degree measure? 2. How to identify a unit circle and its relationship to real numbers? 3. How to evaluate trig functions of any angle? 4. How to use the fundamental trig identities? 5. How to sketch the graph of trig functions and translation of sine and cosine functions? 6. How to evaluate trig functions?
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	

Unit 5: Analytic Trigonometry

Brief Summary of Unit

Students will learn basic fundamental identities and use them to verify other trigonometric identities. They will solve trigonometric equations. Some of the formulas taught are the Sum and Difference as well as Multiple-Angle and Product-to-Sum formulas.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Use fundamental trigonometric identities to evaluate trig functions and simplify trig expressions
2. Prove and apply identities
3. Use standard algebraic techniques and inverse tri functions to solve trigonometric equations
4. Use sum/diff formulas, multiple angle formulas, power reducing formulas, half-angle formulas, and product to sum formula to rewrite and evaluate trigonometric functions
5. Evaluate the inverse trigonometric functions

Understandings:

1. Fundamental trig identities can be used to simplify trig expressions.
2. Trig identities can be rewritten to trig equations that model real-life situations.
3. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trig ratios for acute angles.

Essential Questions:

1. How to use fundamental trig identities to evaluate trig functions and simplify trig expressions?
2. How to verify trig identities?
3. How to use standard algebraic techniques and inverse trig functions to solve trig equations?

Stage Two-Assessment Evidence

Performance Tasks:

Other Evidence: :(quizzes, tests and so on)

Stage Three-Learning Plan

Unit 6: Additional Topics in Trigonometry

Brief Summary of Unit

Students will learn to apply non-right triangle trigonometry to solve for angles and sides by using the Law of Sines and Law of Cosines. Students will use vectors to model and solve real-life problems involving magnitude and direction.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

| 3.Linear programming can be used to
 model and solve real-life problems.
 Ptage Two-Assessment Evidence
 Performance Tasks:
 Other Evidence: :(quizzes, tests and so on) |
| :--- | :--- |

Unit 8: Matrices and Determinants

Brief Summary of Unit

In addition to solving a system of equations by the methods discussed in the previous chapter, matrices can be used to solve systems of linear equations in two or more variables. This chapter explores basic matrix operations, elementary row operations, and more complicated matrix methods to solve the system of equations.

| Stage One-Desired Results |
| :--- | :--- |
| Established Goals: (Standards of Learning, Content Standards) |
| 1. Use matrices, Gaussian elimination, and Gauss- Jordan elimination to solve systems of linear |
| equations |

